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Abstract

High-resolution dive depth and acceleration recordings

from nearshore (Sarasota Bay, dive depth < 30 m), and off-

shore (Bermuda) bottlenose dolphins (Tursiops spp.) were

used to estimate the diving metabolic rate (DMR) and the

locomotor metabolic rate (LMR, L O2/min) during three

phases of diving (descent, bottom, and ascent). For shallow

dives (depth ≤ 30 m), we found no differences between the

two ecotypes in the LMR during diving, nor during the

postdive shallow interval between dives. For intermediate

(30 m < depth ≤ 100 m) and deep dives (depth > 100 m),

the LMR was significantly higher during ascent than during

descent and the bottom phase by 59% and 9%, respectively.

In addition, the rate of change in depth during descent and

ascent (meters/second) increased with maximal dive depth.

The dynamic aerobic dive limit (dADL) was calculated from

the estimated DMR and the estimated predive O2 stores.

For the Bermuda dolphins, the dADL decreased with dive

depth, and was 18.7, 15.4, and 11.1 min for shallow, inter-

mediate, and deep dives, respectively. These results provide
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a useful approach to understand the complex nature of

physiological interactions between aerobic metabolism,

energy use, and diving capacity.
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1 | INTRODUCTION

Marine mammals divide their time between being underwater, where they search and capture prey, and at the

surface, where they replenish the O2 used for aerobic metabolism during their submergence. The total time spent on

a single dive will influence both the type of prey they can access and the amount of prey that can be obtained. Thus,

an individual's ability to maximize prey capture during diving is a function of the metabolic cost of a dive, or the O2

consumed, and the total available O2 stores that can be used to fuel aerobic metabolism. Although marine mammals

have the capacity for anaerobic metabolism, most species perform most of their dives utilizing aerobic metabolism

(Kooyman et al., 2020), and extended dives fueled by anaerobic metabolism eventually result in reduced foraging

efficiency (Fedak & Thompson, 1993). Adaptations to enhance the aerobic dive duration in marine mammals include

hydrodynamic shape to minimize drag to lower the metabolic cost of swimming and increased O2 stores (Fish, 1994;

Ponganis, 2015). In addition, theoretical work has suggested that the dive response helps regulate perfusion to opti-

mize utilization of available O2 so that the duration for aerobic metabolism is maximized (Davis & Kanatous, 1999).

The O2 stores are in three compartments: the lungs, blood, and skeletal muscle (Davis, 2019; Ponganis, 2015).

Species that perform long and deep dives generally have a greater volume of blood relative to body mass and a

greater blood O2 capacity (more O2 per unit volume of blood). The blood O2 capacity is enhanced by a higher pro-

portion of red blood cells per volume of blood (the hematocrit) and by an elevated concentration of hemoglobin

within the red blood cells. In addition, extreme divers generally also have a greater overall muscle mass, with large

muscle fibers, low mitochondrial volume, and higher concentration of muscle myoglobin that also binds and stores

oxygen (Kooyman & Ponganis, 1998; Noren & Williams, 2000; Pabst et al., 2016; Ponganis, 2015). Greater muscle

and blood O2 stores increase the available O2, while increased muscle mass proportional to body mass lowers the

overall metabolic rate as the metabolic rate of muscle is lower than most other tissues (Pabst et al., 2016). Lungs, on

the other hand, have limited ability to enhance available O2, especially in deep divers, as the alveoli compress during

diving, which reduce or eliminate gas exchange (Bostrom et al., 2008; Kooyman, 1973; Scholander, 1940).

In cetaceans there is limited knowledge of the total O2 stores (Arregui et al., 2021; Noren & Williams, 2000;

Velten et al., 2013), and although studies have estimated the resting or swimming metabolic rate (Allen et al., 2022;

Noren et al., 2013; Pedersen et al., 2020; Williams et al., 1993; Worthy et al., 2013, Yeates & Houser, 2008), the O2

utilization during dives has not been determined. Methods to estimate field metabolic rate (FMR), such as the rate of

O2 consumption, using respirometry, energy intake, or stable isotopes, are logistically difficult in fully aquatic free-

ranging marine mammals (Arranz et al., 2019; Noren, 2011; Rojano-Doñate et al., 2018). Even in the best-studied

cetacean, the common bottlenose dolphin (Tursiops truncatus), few estimations of FMR exist (Allen, 2021; Bejarano

et al., 2017; Rimbach et al., 2021). The basal metabolic rate (BMR) has been measured in trained bottlenose dolphins

(Allen et al., 2022; Noren et al., 2013; Pedersen et al., 2020; van der Hoop et al., 2014; Williams et al., 1993;

Yeates & Houser, 2008), and used as a proxy to estimate FMR by multiplying BMR by a factor of between 3 to

6 (Arranz et al., 2019; Bejarano et al., 2017; Noren, 2011).

While measuring FMR for wild, unrestrained animals is challenging, proxies such as activity have shown

promise in estimating diving metabolic rate (DMR; Fahlman et al., 2008, 2013), and thus ultimately FMR. For trained
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bottlenose dolphins, physical activity proxies for metabolic rate have recently been validated against metabolic rate

estimates based on O2 consumption rate, stable isotopes, and energetic intake, and have been used to evaluate the

energetic impact of disturbance for wild, unrestrained animals (Allen, 2021; Allen et al., 2022). In the current study

we used time-series dive data to estimate in situ activity levels in two populations of bottlenose dolphins; one coastal

ecotype that exhibits short and shallow dives (Wells et al., 2013), and one offshore ecotype that conducts long, deep

foraging dives (Fahlman, Jensen, et al., 2018; Klatsky et al., 2007). We used the established relationship between

activity and locomotor metabolic rate (LMR, L O2/min; Allen et al., 2022), along with estimates of BMR and heat

increment of feeding (HIF) to estimate variation in the metabolic rates at the surface and while diving, i.e., DMR, for

the two ecotypes. We then used a previously developed gas dynamics model to determine the dynamic aerobic dive

limit (dADL) from the estimated DMR and the O2 stores before the dive. Thus, the dADL is similar to the calculated

ADL (cADL), but varies between dives depending on the DMR and the estimated O2 stores following the period of

recovery at the surface. Finally, the energetic costs were compared for various activities of these two populations.

2 | MATERIAL AND METHODS

2.1 | Abbreviations

ADL: aerobic dive limit, the dive duration until the blood lactate begins to increase, usually assumed an estimate of

the time when aerobic metabolism is used to support the dive.

bADL: behavioral aerobic dive limit, an estimate of the ADL based on the cumulative dive frequency, usually

assumed to be the dive duration that 97.5% of all dives are within.

cADL: calculated aerobic dive limit, an estimate of the available oxygen stores divided by the oxygen

consumption rate.

dADL: dynamic aerobic dive limit, an estimate of the available oxygen stores before a dive divided by the diving

metabolic rate.

BMR: basal metabolic rate, the metabolic rate used to support life in an inactive, postabsorptive adult mammal in a

thermoneutral environment.

DMR: diving metabolic rate, the energetic cost for an individual dive.

FMR: field metabolic rate, the daily metabolic rate of an animal in the field.

HIF: heat increment of feeding, the additional metabolic cost due to digestion. Also called specific dynamic

action (SDA).

LMR: locomotor metabolic rate, expressed as a metabolic rate in L O2/min.

MR: metabolic rate, in this study, the total metabolic rate estimated as the sum of BMR + HIF + LMR.

ODBA: Overall dynamic body acceleration, the acceleration due to movement of a body often used as a proxy of

metabolic rate.

RMR: Resting metabolic rate, the metabolic rate of an inactive animal that may not comply with the strict definition

of BMR.

2.2 | Animals and habitats

We used previously collected and published high resolution time-depth recordings and physiological data from six

bottlenose dolphins (Tursiops spp.; Table 1) studied in Sarasota Bay, Florida (coastal/nearshore, shallow diving eco-

type) and off the coast of Bermuda (offshore, deep diving ecotype; Fahlman, Jensen, et al., 2018). The animals resid-

ing in and around Sarasota Bay are smaller and shallow-diving, with average dive depths around 1 m, and dive

durations around 40 s (Fahlman, Jensen, et al., 2018; Wells & Scott, 2018). The dolphins residing in Bermuda are of a

978 FAHLMAN ET AL.
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larger pelagic ecotype which commonly perform dives beyond 200 m and a maximum recorded dive depth of 1,000 m

(Fahlman, Jensen, et al., 2018; Fahlman et al., 2023; Klatsky et al., 2007). The shallow-diving ecotype has lower hemat-

ocrit and smaller body size, indicating lower body O2 stores (Fahlman, Jensen, et al., 2018; Schwacke et al., 2009), but

the resting metabolic rate and respiratory tidal volumes do not differ (Fahlman, Brodsky, et al., 2018; Fahlman,

McHugh, et al., 2018).

Three (two male and one female) dolphins were studied off Bermuda in August 2016 (Fahlman, Jensen,

et al., 2018; Fahlman et al., 2023). The animals were captured by a break-away hoop netting technique

(Asper, 1975), and briefly restrained for a health assessment, tagging, and sampling. Once in the net, swimmers man-

aged the animal and moved it onto a buoyant foam mat. The animal was moved onto a sling and then brought onto

the sampling boat. Once on the boat, the dolphin was weighed (±0.2 kg;, Ohaus 3000 Series industrial floor scale)

and underwent a basic health examination (e.g., Fahlman, McHugh, et al., 2018; Wells et al., 2004).

In Sarasota Bay, Florida, three female, long-term resident bottlenose dolphins (27�22040.3100N, 82�3509.4000W) were

sampled during May 12–20, 2015, and May 6–11, 2016. These animals were measured during temporary catch-and-

release health assessments by the Sarasota Dolphin Research Program (SDRP), and were briefly captured with a seine

net, examined, and sampled before being released on site (Fahlman, Brodsky, et al., 2018; Wells et al., 2004).

At the end of the health examination, dolphins from both the Bermuda and Sarasota populations were

instrumented with a sound and movement-recording archival DTAG (Johnson & Tyack, 2003) prior to release. Tags

were attached using four small suction cups approximately half-way between the dorsal fin and the blowhole and

programmed to detach within 24 hr, after which they were retrieved using VHF tracking.

2.3 | Tag data collection

All tags were version 3 DTAGs (Johnson et al., 2009; Johnson & Tyack, 2003) sampling stereo sound (240 kHz) as well

as depth, accelerometry and magnetometry (200 Hz). All tag data were processed initially using custom-made DTAG

tools (https://www.soundtags.org) in Matlab R2020 (Mathworks, Natick, MA). All sensor data were corrected for tag-

specific calibrations before down-sampling data to a sample rate of 25 Hz. The exact release time of each animal as

well as the time of tag detachment were identified manually using the acoustic data. Data were then inspected for pos-

sible sliding of the tag along the dolphin's body using estimated angle-of-arrival from focal echolocation clicks extracted

TABLE 1 Animal identification (Dtag ID), Platform Transmitting Terminal id (PTT id) and given name, sex (M-male,
F-female), year of birth (YOB), body mass (Mb), straight length (SL), maximum girth (G), hours of high resolution Dtag
data, and maximum dive depth (Max DD, m) recorded from satellite tag published previously (Fahlman et al., 2023).

Animal ID PTT id/Name Sex YOB (year) Mb (kg) SL (cm) G (cm) Hours of tag data
Maximum
DD (m)

Sarasota

tt15_131a F123 (Eve) F 1998 166 241 135 20.6 —

tt15_134a F199 (WAN2) F 2002 142 236 125 16.4 —

tt16_128a FB33 (Saida Beth) F 1982 195 258 142 24.1 —

Mean (± SD) 168 ± 27 245 ± 12

Bermuda

tt16_243a 110606/Devonshire M — 294 256 142 4.7 872

tt16_244a 110610/Paget F — 173 238 144 21.7 840

tt16_244b 110608/Pembroke M — 282 251 144 17.2 808

Mean (± SD) 258 ± 57 252 ± 10 143 ± 1

DIVING METABOLISM IN DOLPHINS 979
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using a supervised click detector (Jensen et al., 2020). For one Bermuda animal, a tag slide was identified immediately

prior to dusk. All data were then cropped to the time period from release until either first tag slide or tag detachment,

whichever came first.

A dive was defined as a submergence deeper than 1.5 m (1.15 ATA) and longer than 10 s, and the period

between dives termed postdive shallow interval. Thus, for nearshore dolphins, who frequently spend time in areas

where the water depth is <1.5 m, the available depth may be shallower than this threshold. The start and end of each

dive was calculated as the first and last point of the dive that exceeded 0.1 m depth, and the surface interval was

defined as the time from current dive to previous dive (Fahlman, Jensen, et al., 2018).

As a proxy for activity, accelerometer data were used to estimate the overall dynamic body acceleration (ODBA) by fil-

tering each accelerometer channel with a 0.5 Hz high-pass filter (analogous to a 2 s window length for separating static

from dynamic acceleration), and then summing the total dynamic acceleration across channels (Wilson et al., 2006). Mean

ODBA was then calculated in 10 s sliding windows with a 90% overlap. To estimate the metabolic rate of locomotion,

mean ODBA was converted to LMR using a correlation established with trained bottlenose dolphins (Allen et al., 2022).

2.4 | Estimating locomotor cost and total field metabolic rate

The overall metabolic rate (MR) during a surface interval and while diving was assumed to consist of basal metabolic rate

(BMR), heat increment of feeding (HIF), and the LMR, e.g., MR = BMR + HIF + LMR. The BMR was estimated from pre-

vious measurements of bottlenose dolphins and scaled for the body mass of the animals in the current study (Allen

et al., 2022; Pedersen et al., 2020; van der Hoop et al., 2014; Yeates & Houser, 2008). It was assumed that the effect of

digestion was constant during the surface period and during diving, and equal to 28% of BMR (Allen, 2021). To estimate

changes in LMR at the surface and while diving, we used the calibrated relationship between the O2 consumption rate

( _VO2
) and the overall dynamic body acceleration (ODBA), established using trained bottlenose dolphins (Allen

et al., 2022) with tags attached in the same location to ensure that acceleration measurements from body movement

were recorded consistently by accelerometers. The estimated instantaneous LMR was averaged for each dive and

surface interval and added to the BMR and HIF estimations to obtain an estimate of the total DMR and surface MR.

2.5 | Activity during descent and ascent

To assess the metabolic costs of different phases of the dive for Bermuda dolphins, we divided each dive into

descent, bottom, and ascent phases. The descent phase was defined as beginning at the start of the dive until the

dolphin reached a depth that was ≥85% of the maximum depth for that dive. The ascent phase began from the last

time the dolphin ascended above a depth that was 85% of the maximum depth until the end of that dive (Hooker &

Baird, 2001; Stimpert et al., 2014). The bottom phase was then defined as the time from the end of the descent until

the beginning of the ascent. The mean and maximum ODBA, and mean LMR were calculated for each dive phase.

These data were then divided into shallow (≤ 30 m), intermediate (>30 m and ≤ 100 m), and deep dives (>100 m).

Descent and ascent rates were calculated as the change in depth per second.

2.6 | Gas dynamics model

We used a previously published model to estimate blood and tissue O2, CO2, and N2 in the bottlenose dolphin

(Fahlman et al. 2009; Fahlman, Jensen, et al., 2018). The model was revised to allow movement (acceleration), a

proxy for metabolic rate (O2 consumption and CO2 production rates, see below) (Allen et al., 2022; Fahlman

et al., 2013), and its corresponding changes in perfusion (Fahlman, Brodsky, et al., 2019; Fahlman, Miedler, 2019;

980 FAHLMAN ET AL.
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Miedler et al., 2015), to vary between dives and surface intervals. The details of the model and its previous revisions

have been explained in detail elsewhere (Fahlman et al. 2006, 2009; Fahlman, Jensen, et al., 2018; Hooker

et al., 2009; Kvadsheim et al., 2012), and we only detail the changes made to the version used in this study.

The gas dynamics model was used to confirm that the available O2 would support the estimated DMR to allow

aerobic metabolism for each dive. Within the gas dynamics model, the MR for each tissue was distributed as previ-

ously defined (Fahlman, Jensen, et al., 2018). The effect of HIF was assumed to increase the metabolic rate of the

digestive tract, while the changes in LMR were assumed to alter the metabolic rate of the muscle compartment

(Table 2; Fahlman, Jensen, et al., 2018).

The cardiac output was based on empirical measurements in bottlenose dolphins before, and after exercise and

also before, during, and following static breath-holds (Fahlman, Miedler, et al., 2019; Miedler et al., 2015). The blood

flow distribution was varied, assuming that diving caused peripheral vasoconstriction and most perfusion was to cen-

tral organs. If a tissue ran out of O2 during a dive, the cardiac output and blood flow distribution were changed to

support aerobic metabolism. Thus, the tissue specific and total metabolic cost, cardiac output, and blood flow distri-

bution were assumed constant throughout each dive and surface interval.

2.7 | Estimating dynamic aerobic dive limit (dADL)

The dADL was estimated from the estimated DMR and the O2 stores before each dive for each individual dolphin.

The DMRs for all dives within a depth phase were averaged for each individual and used to estimate the dADL. The

O2 stores were taken from a previous theoretical study looking at tissue and blood O2, CO2, and N2 tensions in the

Bermuda dolphins (Fahlman, Jensen, et al., 2018).

2.8 | Data processing and statistical analysis

Comparisons between population means were done using an independent t-test, or z-test. For three or more com-

parisons, we used the linear mixed model (lme; Pinheiro et al., 2015) in R, using animal as a random effect, with a post

hoc test (emmeans; Lenth et al., 2022) to compare differences. In this study p-values ≤.05 or ≤ .01 were considered

TABLE 2 Table showing the estimated postdive shallow interval cardiac output (CO); compartment (central
circulation, muscle, brain, and adipose/bone) specific resting metabolic rate (RMR, including heat increment of
feeding); and tissue, lung, and blood O2 stores; and dynamic aerobic dive limit (dADL) for shallow (S, depth ≤ 30 m),
intermediate (I, 30 m < depth ≤ 100 m), and deep (D, depth > 100 m) dives.

Animal ID

CO (L/s)
RMR L O2/min O2 stores (L) dADL (min)

Postdive shallow
interval CC Muscle Brain Fat Tissue Lung Blood S I D

Sarasota

tt15_131a 0.87 0.28 0.24 0.03 0.03 2.8 1.2 2.2 6.0 — —

tt15_134a 0.78 0.25 0.21 0.03 0.03 2.4 1.1 1.9 3.9 — —

tt16_128a 0.99 0.31 0.27 0.03 0.04 3.3 1.4 2.5 5.8 — —

Bermuda

tt16_243a 0.94 0.34 0.33 0.01 0.03 14.7 2.1 10.8 22.5 16.5 —

tt16_244a 0.63 0.23 0.22 0.01 0.02 8.7 1.3 6.4 15.0 12.3 10.8

tt16_244b 0.91 0.33 0.32 0.01 0.03 14.1 2.0 10.4 18.6 17.5 11.4

DIVING METABOLISM IN DOLPHINS 981
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as significant and highly significant, respectively, and p ≤ .1 was considered a trend. Data are presented as the mean

± standard deviation (SD), unless otherwise stated.

3 | RESULTS

3.1 | Dive behavior

Sarasota dolphins only performed shallow dives due to water depth constraints. Bermuda dolphins performed dives

spanning all depth ranges, but a tag slide on one animal before sunset meant that only data in the first two depth

regions were used here (Table 3). For shallow dives, the dive duration was significantly shorter (linear mixed effects

model [lme], df = 1, χ2 = 3.95, p < .05) and the postdive shallow interval longer (df = 1, χ2 = 4.07, p < .05) in the

Sarasota dolphins (Table 3). Similarly, both the mean (df = 1, χ2 = 11.9, p < .001) and maximum (df = 1, χ2 = 12.1,

p < .001) dive depths for shallow dives were deeper in the Bermuda dolphins (Table 3).

F IGURE 1 Rate of change in depth (m/s) against maximum dive depth (m) during (a) descent or (b) ascent. Dives

with a dive depth less than 30 m are shown as box plots. Each data point shows the average rate of change in depth
for a given dive against the maximum dive depth for that dive.
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For change in depth during descent and ascent, the following equation was the most parsimonious and showed

that (linear mixed effects model [lme], df = 1, χ2 = 78.0, p < .001; Figure 1):

absolute change in depth m=sð Þ¼0:21 �0:01ð Þþ0:0060 �0:0007ð Þ�maxdepth mð Þ�0:0465 �0:0052ð Þ�ascent

ð1Þ

where absolute change in depth is positive for either ascent or descent, maxdepth is the maximum depth reached

during the dive, and ascent is a factor for ascent (1 if ascent and 0 otherwise). Thus, the change in depth during

ascent was significantly slower as compared with descent. In addition, the rate of change in depth increased with

maximal dive depth, meaning dolphins descended or ascended more quickly on deeper dives.

3.2 | Field metabolic rates

BMR was estimated from postprandial male bottlenose dolphins that were inactive and in their thermoneutral

zone (Allen et al., 2022), and ranged from 480 to 716 ml O2/min (Table 4). The average LMR during postdive

shallow intervals following a dive did not differ between populations (unpaired t-test, df = 4, t = 0.14, p > .8)

and ranged from 513 to 954 ml O2/min and 445 to 843 ml O2/min for Sarasota and Bermuda dolphins, respec-

tively (Table 4). Similarly, the LMR during shallow dives for Bermuda and Sarasota dolphins (618 ± 111 ml O2/min

F IGURE 2 Dive depth (m), and (a) absolute value of pitch (�), and (b) overall dynamic body acceleration (ODBA, g)
for dolphin tt16_244a with time in hours:minutes.
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versus 634 ± 200 ml O2/min, respectively; Table 4) did not differ (df = 4, t = 0.12, p > .9). When analyzed together,

the LMR was 8% higher at the surface: 678.5 ml O2/min) compared with during shallow dives (shallow dives: 626.2 ml

O2/min; df = 5, paired t-test, t = 3.55, p < .05).

(a)

(b)

(c)

F IGURE 3 Locomotor metabolic rate (LMR, L O2/min) against maximum dive depth (m) for three bottlenose
dolphins during (a) descent, (b) at the bottom, or (c) during ascent. Dives with a dive depth less than 30 m are shown
as box plots. Each data point shows the average LMR for each phase for a given dive, i.e., the average from the start
until the end of descent for that dive and the maximum dive depth for that dive.

986 FAHLMAN ET AL.

 17487692, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

m
s.13023 by D

uke U
niversity L

ibraries, W
iley O

nline L
ibrary on [17/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3.3 | Activity and LMR during descent and ascent

When comparing the mean LMR for different dive phases (ascent, descent, bottom) against maximum dive depth for

all dives (LMRall), the most parsimonious model included dive phase and maximum depth as ([lme], df = 1, χ2 = 83.6,

p < .01, [lme] followed by Tukey post hoc test [emmeans]; Figures 2 and 3):

LMRall mlO2=minð Þ¼648 �52ð Þ�25:9 �8:9ð Þ�phasebottom�55:5 �8:9ð Þ�phasedescentþ1:21 �0:11ð Þ�maxdepth

ð2aÞ

where phase describes the dive phase (1 for the specific phase and 0 otherwise), and maxdepth (meters) is the maxi-

mal depth for that dive. As most dives (97%) were shallower than 30 m, we also analyzed the LMR for different dive

phases for dives with a maximum depth > 30 m (LMR30). The most parsimonious equation only included dive phase

as a predictor (df = 2, χ2 = 369, p < .001):

LMR30 mlO2=minð Þ¼1,220 �26ð Þ�112 �51ð Þ �phasebottom�716 �51ð Þ�phasedescent ð2bÞ

The post hoc testing showed that there were significant differences in LMR between ascent/descent (df = 247,

t = 11.9, p < .001), and bottom/descent (df = 247, t = 14.1, p < .001), but not between ascent and bottom

(df = 247, t = 2.2, p < .1).

3.4 | Estimating dynamic aerobic dive limit (dADL)

The O2 stores for each individual dolphin were estimated as described in a previous study estimating blood and tis-

sue gas tensions (Table 2 in Fahlman, Jensen, et al., 2018), and ranged from 6.2 to 27.6 L O2 for the individual

dolphins in the current study (Table 2). The cADL estimated from the resting metabolic rate (RMR) is reported in

Table 4 and ranged from 10.3 to 38.5 min. The average (± SD) dADL when estimated from DMR was 5.2 ± 1.1 min

(range: 3.9–6.1 min) for Sarasota dolphins during shallow dives, and 15.1 ± 3.8 min (range: 10.8–22.5 min) for

Bermuda dolphins (Table 2). In the Bermuda dolphins, the dADL decreased with dive depth as the metabolic effort

increased with depth, with averages (± SD) 18.7 ± 3.4 min, 15.4 ± 2.7 min, and 11.1 ± 0.4 min for shallow, intermedi-

ate, and deep dives, respectively (df = 2, χ2 = 9.6, p < .01).

4 | DISCUSSION

A number of estimates of FMR exist for cetaceans, but most only provide an overall cost and cannot provide estimates

for specific activities (Allen, 2021; Arranz et al., 2019; Bejarano et al., 2017; Noren, 2011; Rimbach et al., 2021;

Rojano-Doñate et al., 2018). Instead, researchers have established relationships between movement and energy use,

which can be calibrated with dolphins in human care, and applied to movement data from wild dolphins to estimate

their energetic needs (Allen et al., 2022; Fahlman et al., 2013; Williams & Noren, 2009; Williams et al., 1993, 2017). In

the current study, we used an established relationship between activity, as evaluated using ODBA, and oxygen con-

sumption in the bottlenose dolphin (Allen et al., 2022), combined with a gas dynamic model to evaluate differences in

the diving capacities and metabolic requirements of dolphins in Sarasota and Bermuda. The results demonstrate that

Bermuda dolphins dive deeper and longer than the dolphins in Sarasota, and that the dADL of Bermuda dolphins is up

to three times longer than that of Sarasota dolphins, mainly due to greater overall O2 stores. For shallow dives, we

found no difference between the two ecotypes in the LMR during diving, nor during the postdive shallow intervals fol-

lowing dives (Table 4). For intermediate and deep dives, which were only performed by the Bermuda dolphins, the
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average LMR did not change with maximum dive depth, but the LMR was significantly higher during ascent as com-

pared with descent or the bottom phase (Equation 2b). Although the LMR was higher during ascent and did not change

with depth, the rate of change in depth was higher during descent as compared with ascent in Bermuda dolphins

(Equation 1), suggesting either higher pitch (Figure 2) or higher swim speed due to changes in buoyancy-related loco-

motory efficiencies. The dADL in the current study was 11.1 min in the Bermuda dolphins during deep dives (>100 m),

which is close to the 9.6–10.4 min estimated from behavior (bADL; Fahlman et al., 2023).

The ADL is a useful index to estimate the duration that a dive can be fueled by aerobic metabolism. Most

breath-hold diving vertebrates seem to be performing most dives within their ADL, but also appear to have the

capacity to dive beyond this duration as they switch to anaerobic metabolism (Kooyman et al., 1980). Diving beyond

the ADL results in lactate build-up and changes in the acid base balance, which results in extended postdive shallow

intervals as the lactate is processed aerobically. The ADL is defined as the duration when the lactate begins to

increase, but it is difficult to measure in freely diving animals, and there are few species where it has been measured

(Kooyman et al., 1980, 2020).

The dADL, on the other hand, relates the available O2 stores to the rate of its use, i.e., rate of O2 consump-

tion (Butler, 2006). The maximal O2 stores can be measured in deceased animals by summing the stores from

the muscle, blood, and lungs. For example, the muscle myoglobin concentration total and muscle mass can be

determined during dissection. Although this may be straightforward, the heterogeneity of myoglobin in different

muscle groups (Arregui et al., 2021), the complexity of measuring blood volume, and the fact that the diving lung

volumes can vary (Fahlman et al., 2020; Hooker et al., 2021; McDonald & Ponganis, 2012), makes this compli-

cated. Similarly, the rate of O2 consumption is not a static value but varies depending on effort. Thus, as the

diving metabolic rate varies between species and throughout a dive (Williams et al., 2017) in relation to the

activity (Fahlman et al., 2013), the dADL will vary depending on effort. The RMR or BMR is often used for

the postdive shallow interval, and then a scaling factor used to estimate the cost while underwater (Bejarano

et al., 2017; Fahlman, Jensen, et al., 2018). Thus, using the estimated relationship between ODBA and LMR in

wild animals to calculate the dADL offers a more realistic estimate of the actual ADL as the estimated metabolic

rate is allowed to change with activity level.

The significantly greater dADL in the Bermuda dolphins in the current study was due to the higher estimated O2

stores for this larger offshore dolphin ecotype. Although the relative size of different body compartments has been

published for nearshore dolphins (Mallette et al., 2016), little is known about the body composition of the offshore

ecotype. It is therefore possible that the compartment sizes, their relative metabolic rates, and the true O2 stores are

somewhere in between the nearshore ecotype (the Sarasota dolphin) and the deep diving cetaceans (Pabst

et al., 2016; Velten et al., 2013). With variation in the relative muscle mass of the deep diving ecotype, it is also pos-

sible that the relationship between activity and energy cost is different compared with that developed for dolphins

during shallow surface swims (Allen et al., 2022). Still, the estimated dADL of 11.1 min for deep dives was reasonably

close to the estimated bADL of 9.6–10.4 min in the same dolphins (Fahlman et al., 2023), suggesting that the

dynamic gas model used in the current study provides reasonable results also for deep diving dolphins. However,

better information of body composition of pelagic dolphins would help improve future modeling studies. Thus, the

maximal dADL in the current study is likely overestimated, and the true ADL somewhere between 10 min and

11.1 min. In addition, this study provides a new index, the dADL, that allow a more realistic estimate of the aerobic

capacity during diving and that is allowed to vary between individuals, and the metabolic costs of different activities

and their relative duration during the dive.

The Bermuda dolphins appear to reduce activity and LMR by as much as 55% and 59% during descent com-

pared with movement at the bottom phase or during ascent (Equation 2b, Figures 2 and 3). This behavioral con-

trol to reduce locomotory cost can be seen in Figures 1 and 3 as a plateau. Similar results in other species have

been reported and proposed as a strategy to save energy during diving (Fahlman et al., 2008; Williams, 2001).

Although past studies have examined activity throughout the different dive phases in diving mammals (e.g., see

Figure 3 in Fahlman et al., 2008), we are not aware of any other study that has attempted to estimate the
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metabolic costs for the various phases from a species-specific calibrated relationship between ODBA and LMR.

In the current study, we show that periods of gliding during descent may explain the lower LMR. This metabolic

saving was possible despite a slightly higher rate of change in depth during descent as compared with ascent

(Equation 1). The faster change in depth was in part due to the steeper pitch angle during descent as compared

with ascent (Figure 2), and it is also possible that buoyancy changes with dive depth also contribute to a faster

rate of change in depth. The deep diving swim behavior in the bottlenose dolphins appears to have similarities

to that recently reported in Risso's dolphins (Grampus griseus). In the Risso's dolphin, during deep (>400 m) and

long (>9 min) foraging dives, this species employed a spinning behavior with high activity and speed as they

began the dive, followed by sinking as they became negatively buoyant (Visser et al., 2021). In the Bermuda dol-

phins, the rate of change in depth during descent and ascent increased with dive depth (Equation 1, Figures 1

and 2), and both the rate of change in dive depth during descent and ascent for deep dives was similar to those

reported in the larger Risso's dolphin (Visser et al., 2021). This suggests that dolphins exhibit a cost-effective

swim strategy to reach deep prey patches faster with minimal metabolic cost, where an initial burst of activity

close to the surface and a steeper pitch angle help increase the rate of descent. However, unlike the Risso's dol-

phins, the deep diving Bermuda bottlenose dolphins do not appear to perform high activity spins during descent

as the activity level was low and there were only brief bursts of activity close to the surface (Figure 2).

To illustrate how these differences affect the metabolic cost of different dives, we estimated the LMR for the

different phases of a dive to 50 m versus 500 m. For this, we used the changes in descent and ascent rates

(Equation 1) to estimate the duration and LMR of the descent, ascent, and the total time at the bottom. We used a

dive duration of 225 s and 550 s for the dive to 50 m and 500 m, respectively, which are representative dive dura-

tions to these depths for these individuals (Fahlman et al., 2023). In this case, the dives to 50 m and 500 m would

result in transit times of 206 s and 314 s, respectively. In this hypothetical case, the total time in the bottom phase

would be 19 s for a dive to 50 m, while the dive to 500 m would have a bottom time of 236 s. Thus, both the abso-

lute time and the relative time at the bottom were longer, being 43% for a deep dive as compared with only 8% for a

shallow dive. To estimate the overall difference in metabolic cost of descending and ascending, the estimated LMR

in Equation 2b for the various phases of the dive was used. The estimated metabolic rate for the combined descent

and ascent (not including the bottom phase) for a 50 m dive would be 0.88 L O2/min. For the dive to 500 m the

overall metabolic rate would be 0.86 L O2/min. Consequently, the higher LMR during the ascent in deeper dives is

offset by the lower LMR during descent, resulting in a LMR that is similar during the two dives. The estimated LMR

for the entire dive, on the other hand, would be 8% higher during the deeper dive (LMRshallow = 0.90 L O2/min ver-

sus LMRdeep = 0.97 L O2/min), due to the higher LMR during ascent and longer time at the bottom. Thus, the

reduced metabolic cost during descent agrees with the suggestion that the intermittent swimming strategy in

breath-hold diving marine mammals helps reduce the overall metabolic cost of diving and extends the dADL

(Williams, 2001).

In the current study, we estimated the DMR in two populations of bottlenose dolphins during different phases

of diving and during postdive shallow intervals between dives. The data suggest that the ascent phase is energeti-

cally more expensive and that during deeper dives the dolphins spend more energy at depth compared with

shallower dives. We propose that this deep diving behavior, which occurs mainly at night, allows these deep diving

dolphins to access high energy prey, encounter prey at a higher rate, or encounter prey that is more easily captured

similarly to other deep diving marine mammals. We also show that the dADL is a value that varies between individ-

uals, and with the overall activity and swimming strategy used during the dive.
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